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The ignition of the supersonic boundary layer flow of a combustible mixture over a 
flat plate is studied through both direct numerical integration and activation energy 
asymptotics. Since ignition can be induced through either internally generated 
viscous heating or heat transfer from a hot wall, analyses are conducted for both an 
adiabatic wall and an isothermal wall whose temperature can be either higher or 
lower than the maximum frozen temperature in the flow. The analyses provide a 
description of the flow structure under various ignition situations, especially the 
extent of flow non-similarity and the interaction between the inner reaction region 
and the outer frozen regions. Explicit expressions for the ignition distance are 
obtained for all ignition situations, and the corresponding effects of the physical 
parameters on the ignition delay are also assessed. Specifically, it is demonstrated 
that, for low free-stream Mach number DI,, the ignition distance increases linearly 
with H,,, because of the decreased residence time, and for high M,,, it decreases 
exponentially with M,,, because of viscous heating. Results from the asymptotic 
analyses are found to compare well with those obtained from the direct numerical 
integration. 

1. Introduction 
The development of the scramjet engine for supersonic propulsion (Waltrup 1986 ; 

Law 1992) and the scramaccelerator for hypervelocity projectile launching 
(Humphrey & Sobota 1991) has renewed interest in supersonic combustion. In  
contrast to subsonic situations, high-speed flows generate a considerable amount of 
heat through viscous dissipation, which can play an essential role in such practical 
issues as ignition delay and flame stabilization in supersonic propulsion, and 
premature ignition in scramaccelerators. The relevant fundamental combustion 
phenomenon here is the ignition within chemically reactive supersonic boundary 
layer flows. 

A large number of theoretical studies have been performed on ignition in subsonic 
laminar boundary layer flows. Since the presence of finite-rate chemical reaction can 
introduce an additional timescale to an otherwise similar boundary layer flow, 
chemically reacting boundary layer flows are frequently non-similar. Consequently, 
many of the theoretical studies were concerned with the issue of non-similarity. 
These include the series expansion technique of Marble & Adamson (1954) and Cheng 
& Kovitz (1957, 1958) and the iteration technique of Dooley (1957) for the mixing 
layer flow, the numerical solution of Sharma & Sirignano (1970) for several types of 
boundary layer flows, and the activation energy asymptotic analysis of Law & Law 
(1979) for the isothermal flat-plate boundary layer. In the last study the weakly 
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FIGUEE 1. Schematic of the model illustrating boundary layer flow over a flat plate. 

reactive flow was shown to be locally similar in the limit of large activation energy, 
and an explicit expression for the ignition distance was consequently derived. 
Recently, Treviiio & MBndez (1991) included complex chemistry in an asymptotic 
analysis of the flat-plate boundary layer flow of a hydrogenlair mixture. A common 
result in each of the above studies is that the ignition distance basically scales 
linearly with the free-stream velocity. 

A straightforward application of the above subsonic scaling on the ignition 
distance to supersonic flows would show that boundary-layer flame stabilization in 
supersonic combustors requires excessively long ignition distances and therefore is 
not a viable concept. This assessment, however, does not take into account the fact 
that a high-speed flow also possesses a tremendous amount of kinetic energy which, 
when converted into thermal energy through viscous heating in the boundary layer, 
constitutes an additional source for ignition. Thus the ignition distance could 
conceivably be shortened when viscous heating is accounted for. Indeed, viscous 
heating is the only heat source to induce ignition in an adiabatic system. 

The effect of viscous heating on ignition was first considered by Jackson & 
Hussaini (1988) in their asymptotic study of a supersonic mixing layer. J u  & Niioka 
(1991) examined a similar problem with multi-step chemistry and O( 1) temperature 
difference between the two free streams. I n  both of these studies, the two streams 
were assumed to be a t  nearly the same velocity, and thus viscous heating was a 
higher-order effect. Grosch & Jackson (1991) performed a numerical and asymptotic 
analysis of the mixing-layer ignition problem, in which they allowed for O(1) 
differences in free-stream temperatures and velocities. Their results illustrate the full 
effect of viscous heating on ignition and they provide ignition criteria for various 
values of system parameters. More recently, Figueira da Silva, Deshaies & Champion 
(1992) also assessed the role of O( 1) viscous heating effects in their numerical study 
of supersonic flat-plate boundary-layer ignition with detailed hydrogen/air chem- 
istry. 

In  the present paper we shall perform a comprehensive numerical and asymptotic 
study of the weakly reactive laminar supersonic flat-plate boundary layer flow with 
O(1) viscous heating and simplified, one-step overall reaction, up to the state of 
ignition. We are interested in identifying the structure of the boundary layer flow 
under all possible heating and ignition situations, and consequently determining 
explicit expressions for the associated ignition distance in terms of all relevant 
parameters. Specifically, we shall show that there are three distinctively different 
ignition situations, namely when the wall is: (i) adiabatic such that viscous heating 
is the only ignition source, (ii) isothermal and subadiabatic (heat is transferred to the 
gas) in the inert limit, and (iii) isothermal and superadiabatic (heat is transferred 
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from the gas) in the inert limit. It is reasonable to anticipate that external heating 
from the wall is the dominant source for ignition in the second case and is therefore 
relevant for relatively low Mach number flows, while in the first and third cases 
viscous heating is the dominant source for ignition and therefore they are relevant 
for high Mach number flows. Additional issues of interest in the present study are the 
extent of non-similarity and local-similarity for the various ignition regimes, and the 
definitions of ignition based on either the steady-state, turning-point consideration 
or the non-steady, thermal explosion consideration. 

I n  the next section the mathematical problem will be formulated. In  $ 3  we present 
numerical solutions for the full problem as well as those obtained by assuming local- 
similarity in the flow field. In  $4 we present the asymptotic analysis for both 
adiabatic and isothermal walls, and explicit expressions for the ignition distances are 
derived. Finally, in $ 5  we summarize our results and add further discussions. 

2. Formulation 
As shown in figure 1,  we consider a laminar boundary layer flow of a combustible 

mixture with supersonic free-stream velocity u,, temperature pa, density pa, 
pressure ji and species mass fractions 8, , over an impermeable, non-catalytic flat 
plate. Both adiabatic and isothermal walls are considered in our analysis. By 
restricting the ignition phenomena to be thermally induced, it is adequate to 
represent the reaction mechanism as a one-step overall irreversible reaction 

between the fuel F and oxidant 0 to form a product P, wit,h an Arrhenius reaction 
rate proportional to 

p p + q Y g  F’g 9~ exp ( - E , / R O ~ ) .  (2) 

Here vo and vF are the stoichiometric coefficients, E, is the activation energy, RO the 
gas constant, and the temperature. For simplicity, we adopt Chapman’s linear 
viscosity law such that pb becomes constant in the current isobaric situation. We 
further assume constant properties such as specific heat cp ,  density-weighted mass 
diffusion coefficients p2Dt, and unity values for the Lewis and Prandtl numbers. 
Although not presented here, we have performed numerical studies with arbitrary 
Lewis number and found that these effects play a secondary role in the ignition 
process. 

In  terms of non-dimensional quantities, the conservation equations for mo- 
mentum, mass fraction of species i ,  and static energy in the supersonic boundary 
layer are (see, for example, Chung 1965; Williams 1985) 

f”’ +$” = 0, (3) 

which are supplemented by the ideal-gas equation of state, and in these equations a 
prime denotes d/dy and ,.u E icy- 1)W, T,. The non-dimensional temperature, T, 
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and the mass fraction for species i, Y,, are given in terms of the original variables by 
T = cp  T/QYFm and & = $/gi pF,, where Q is the heat of reaction per unit mass of 
fuel and ci is the stoichiometric oxidizer-to-fuel mass ratio such that cF = 1 .  The 
parameters appearing in these equations include the ratio of specific heats y = cp /cv ,  
the non-dimensional activation temperature T, = c , ( E , / R O ) / Q ~ ~ ~ ,  and the free- 
stream Mach number M ,  = u,/(yRoT,/V)i. The variables [ and y are normalized 
Howarth-Dorodnitsyn variables defined as 

A -  

and f is the stream function $(x, y) normalized as 

f ( r )  = $(x, Y)/(2Pcobm urn x)'* (8) 

The variable [ can be interpreted as a reduced Damkohler number, representing the 
ratio of a characteristic flow time to a characteristic reaction time. I n  these 
expressions, B is the frequency factor of the chemical reaction, W ,  the molecular 
weights, W the average molecular weight, and x and y the physical coordinates 
parallel and normal to the surface of the plate. The last term in the energy equation 
(5) accounts for the viscous heating, which represents the amount of kinetic energy 
that is converted to thermal energy as the flow is slowed down near the wall. For 
supersonic boundary layer flows, this heat source term plays an important role in the 
attainment of ignition. 

The above equations (3)-(5) are to be solved subject to the following boundary 
conditions : 

f ( 0 )  =f ' (O)  = 0, f'(a) = 1,  (9) 

(aY,/ar) (0,Y) = 0, ?(a, Y) = &rn> (10) 

T ( a ,  Y) = T,, (11) 

(aT/ar) (0, 6)  = 0 for adiabatic wall, (12a)  

T(0,  g) = T, for isothermal wall. (126) 

Equations (3) and (9) are the self-similar Blasius equations for boundary layer flows 
over a flat plate, and their solutions are well known (Schlichting 1979). These 
equations are decoupled from the transport equations for the scalar quantities T and 
Y,, and we can therefore study the effect of this flow field on the ignition 
characteristics of supersonic boundary layers. 

We will restrict our study to weakly reactive states through which ignition evolves 
from an initially frozen state. Then the inert solution provides the initial condition 
at the leading edge for the numerical calculation and also represents the leading- 
order, basic temperature and concentration profiles for the asymptotic analysis. In  
the frozen state, the flow is self-similar and the energy equation (5) becomes 

where the subscript f denotes the frozen solution. 
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= f ’( 7) 
such that 0 < 6 < 1 (Law & Law 1979), which will serve as the transverse 
independent variable, so that (13) takes the simplified form 

It is convenient to make the convection-free coordinate transformation 

a q / a g Z  = -2p. (14) 

This has the solution T f  = C ~ + C , ~ - , U ~ ~ ,  where the constants c1 and c2 are to be 
determined by applying (11) together with either (12a) or (12b). 

For the adiabatic wall, application of boundary conditions (11) and (12a) yields 
the frozen solution 

T f  = T, +p-pE2, (15) 

which achieves a maximum value of T, = T, +p at 6 = 0. For combustion systems 
with large activation energies, the reaction term is very sensitive to temperature 
variations and thus it is reasonable to expect that ignition will occur near the wall. 

For the isothermal wall, application of boundary conditions (1 1) and (12 b )  yields 
the solution 

T f  = T,-CC[-,@, (16) 

where a = P-p = (T,-T,) -p  represents the difference between the inviscid heat 
transfer parameter, /I, and the viscous heating term, p. If a > 0, the frozen 
temperature profile (16) achieves a maximum value of T, = T, at = 0 and, as for the 
adiabatic wall case, we expect that ignition will occur near the wall. In this situation, 
heat conduction from the hot wall dominates viscous heating and it is therefore the 
primary energy source causing ignition. 

Next consider a < 0 for the isothermal wall problem, so that viscous heating is 
dominant. The temperature profile (16) now has a maximum value of T,  = T, + a2/4,u 
at 6 = -a/2p > 0, and thus ignition will occur at some finite distance away from the 
wall. Unlike the a > 0 case, heat transfer is now toward the wall. Because the point 
of maximum temperature lies in the interior of the boundary layer, it loses heat to 
the frozen regions on either side. 

Each of the three solutions discussed above represents a frozen state. In the 
presence of finite-rate reaction, the flow is weakly reactive and, through the 
nonlinear Arrhenius kinetics, will eventually attain a state of thermal runaway. We 
shall first discuss the ignition dynamics for these three cases through the numerical 
solution of the full system (4)-(5) and (lo)-( 12). We shall then perform an asymptotic 
analysis of these situations and derive explicit expressions for the ignition distances 
expressed as functions of all the relevant physical parameters of the problem. 

3. Numerical solutions 
Equations (4)-(5) and (lo)-( 12) are solved using a second-order finite-difference 

scheme with implicit determination in the p-direction and marching along the 
streamwise coordinate [, where the step size is readjusted as the solution approaches 
the ignition point in order to capture the abrupt temperature rise. For simplicity 
we have assumed p = q = r = 1 and that the mixture is stoichiometric, with Y,, = 
Yo, = 1 .  We have used the parameter values Q = 1.0 x lo4 kcal kg-l, cp = 
0.25 kcal kg-l K-l, E,  = 60 kcal/mole and y = 1.4, which are typical numbers for 
hydrocarbon/air mixtures. 

The streamwise variation of the temperature profile within the boundary layer in 
the 6 = f ’ ( p )  coordinate is shown in figure 2 (a-c) for the three ignition situations, 
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FIGURE 2. Evolution of the cemperature profiles as computed numerically. (a) The subadiabatic 
wall case with T, = 500 K, T, = 1000 K, M ,  = 0, 5 = 0, 2.0, 4.4, ?.164l2 5.2242, 5.2366, 5.2395, 
5.2398, 5.2399 ( x l0l2). (b) The superadiabatic wall case with T, = T, = 500 K, M ,  = 4.472, 
5 = 0, 2.0, 3.0, 4.0, 4.2872, 4.4394, 4.4658, 4.4734 ( x  loll). (c) The adiabatic wall case with 
p, = 500 K,  M ,  = 2.236, g = 0, 0.5, 1.0, 1.3, 1.4565, 1.4768, 1.4798, 1.4801 ( x  lo1'). 
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where the parameters are chosen such that the maximum value of the inert 
temperature profile is the same in each case. The ambient temperature is chosen to 
be T, = 500 K while the profile a t  the leading edge, 6 = 0, is taken to be the similar 
frozen solution in each case. It is seen that the temperature increases with increasing 
{ as reaction progresses. For the isothermal wall with a > 0, the  heat required for 
ignition is supplied mainly from the hot wall, and in figure 2 (a)  we have plotted the 
temperature evolution for the case of zero viscous heating (p = 0) ,  which is identical 
to the problem of boundary-layer ignition in subsonic flows considered by Law & 
Law (1979). It is seen that the temperature gradient a t  the wall vanishes a t  6 % 

4.4 x lo", while thermal runaway occurs further downstream a t  5 M 5.24 x lo1', as 
indicated by the dramatic increase in the temperature bulge over relatively short 
distances. We remark that, owing to the temperature sensitivity of the reaction rate, 
the point a t  which the wall is adiabatic becomes closer to the location of the 
temperature blow-up as the activation energy is increased. 

Figures 2 ( b )  and 2 ( c )  respectively show the evolution of temperature profiles for 
the isothermal wall with a < 0, and the adiabatic wall. In  particular, figure 2 ( b )  
corresponds to the extreme case of a cold wall, T, = T,, such that the energy for 
ignition is acquired solely from viscous heating. Although there does not exist a 
critical point where the wall passes through adiabaticity in these two cases, there is 
nevertheless an ignition delay, and the points a t  which the temperature profiles blow 
up are given by { z 4.47 x loll and 6 M 1.48 x loll, respectively. 

The streamwise history of the maximum temperature for each case is plotted in 
figure 3 as a solid curve, which clearly illustrates the existence of a critical ignition 
distance, cI, a t  which thermal runaway occurs. It may be noted that since wall 
temperatures and free-stream velocities are different, for the three cases, it is not 
appropriate to compare their relative distances to achieve ignition. 

Since we are only interested in the weakly reactive solutions up to  the state of 
ignition, we have also explored the accuracy of approximating the temperature and 
species profiles as being locally similar by neglecting the a/ac terms in (4) and (5), so 
thpt the coordinate {now appears only parametrically in the reaction rate term. The 
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maximum temperature variation with 5 for these locally similar solutions is plotted 
in figure 3 as dotted lines. For all three cases, a critical value of 5 was found beyond 
which we were unable to converge to a solution, which suggests that these solution 
curves posses turning points. These results demonstrate the two types of problems 
that can arise in the ignition analyses, as discussed in Lifian & Crespo (1976), if we 
regard the transverse convective term in our equations as playing the role of a time 
derivative. That is, similar or locally similar solutions can be interpreted as steady- 
state solutions for which it is known that turning point behaviour exists. By 
accounting for the non-similar convective term, we are considering the full 
evolutionary problem that exhibits thermal runaway. 

Our results show that the locally similar approximation underestimates the actual 
ignition distance, determined by solving the full non-similar equations, by a factor 
of about two for the adiabatic wall and the superadiabatic isothermal wall cases. This 
indicates that streamwise convective transport is an efficient means of sweeping 
away heat liberated by the chemical reaction. The distinction between the similar 
and non-similar solutions becomes relatively indiscernible for the hot wall case (see 
figure 3). It will be shown in $4 that the ignition characteristics for this case are 
primarily determined by the locally similar reactive-diffusive equations in a narrow 
region adjacent to  the hot wall. To leading order, there is no interaction between the 
solution in this reaction zone and the non-similar frozen solution in the outer region 
away from the wall. Thus, the inclusion of non-similar effects will only lead to a 
higher-order correction to the ignition distance, and the solution obtained by making 
the local-similarity assumption is accurate to first approximation for the hot wall 
ignition case. The local-similarity assumption was also found to be appropriate for 
studies regarding ignition of initially separated reactants (Lifian & Crespo 1976), and 
ignition in subsonic boundary layers (Law & Law 1979). 

In addition to  the sample calculation reported above, we have computed the 
ignition distance for several other values of the parameters p and p,  and these results 
will be compared to the results of the asymptotic analysis to be presented in the next 
section. 

4. Asymptotic analysis 
In this section we exploit the fact that the activation energy is large in order to 

derive explicit formulae for the ignition distance. In  particular, we will construct 
asymptotic solutions in inverse powers of the activation energy t o  show how 
temperature perturbations to  the frozen state can give rise to ignition. The expansion 
parameter is defined as B = c/T,, where T,  represents the maximum temperature for 
the inert profiles discussed in $2. Again using 6 = f’(7) as the independent transverse 
variable, our governing equations ( 5 ) ,  ( 1  I )  and (12) become 

T(1,5) = I;, T(6,O) = qtI> 
(?IT/?)() (0,C) = 0 for adiabatic wall, 

T(0,c)  = T, for isothermal wall. 

In  this analysis, reaction is sufficiently weak so that reactant consumption is 
negligible to a first approximation. Therefore, the species equations decouple from 
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the energy equation, and Yo and YF in (17) are replaced by their constant free-stream 
values to leading order. We will now construct solutions to this system in order to 
calculate the minimum ignition distance for both adiabatic and isothermal walls. 

4.1. Adiabatic wall 
In the limit T,-+ co, the reaction rate term is absent in (17) and as shown in $ 2  the 
frozen temperature profile has the self-similar form 

Tf(8 = T,-&, (20) 
where T, = T,+,u. To consider large but finite values of T,, we introduce the small 
expansion parameter e = q /z  4 I ,  where T, is seen to vary with the square of the 
Mach number. Because the Damkohler number is typically very large, the reaction 
rate term is extremely sensitive to temperature variations and a temperature rise of 
O(c)  is sufficient for ignition to occur. Furthermore, the reaction will initiate in a thin 
zone near the hottest location in the frozen flow field. For the present case, this 
reaction zone will be near 6 = 0, and the parabolic shape of the frozen profile (20) 
suggests that this inner structure is of O ( d )  thickness. To examine this structure, we 
introduce the inner stretched variable 

x = &/Q, (21) 

(22) 

f”(7) = f ” ( O ) + o ( € ) .  (23) 

and seek an inner solution of the form 

Tc,,(x, 5) = T, (x )  + 4 ( x ,  0 + Q 4 ( X >  5) + 0 ( S 2 ) >  

whilef”(7) is also expanded as 

When (22) and (23) are inserted into (17) and (19a) and the first two terms in our 
perturbation expansion are retained, we obtain 

0 at  x = 0, --1= ae, - ae 
ax ax 

where A ,  is the reduced Damkohler number expressed as 

Y 

which is at  most algebraically small in E .  In addition to satisfying the boundary 
conditions (25) ,  solutions to (24) must also match appropriately to the outer frozen 
solutions at  x + co. 

We note that the convective term in (24) is of smaller magnitude than the diffusion 
term. Thus, in this region there appears to be an order of magnitude balance between 
transverse diffusion and reaction. However, if we assume that A,, = 0(1 ) ,  then we 
arrive at  a contradiction as no solution can be found that satisfies the boundary and 
matching conditions. This suggests that we have overestimated the magnitude of the 
ignition distance, or equivalently the Damkiihler number. Therefore, effects due to 
reaction are of yet higher order, and it is appropriate to  rescale A,, as 
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a2e0/ay = 0, 

a2e1/aX2 = -d,,exp (8,-x2),  

a$,,/ax = ael/ax = 0 a t  x = 0. 

- 
to be solved subject to  

Integration of (28)  subject to the boundary condition (30) reveals that 8, is a 
function of 5 only, and thus (29) can be readily integrated once to yield 

from which it follows that 

Equation ( 3 2 )  now provides us with a boundary condition for the outer solution at 
5 = 0 through matching. 

In the frozen region away from the reaction zone boundary layer we seek solutions 
of the form ?but((, f;) = Ti(() + do((, <) + O ( E ~ ) ,  and by inserting this into (17) and (18) 
we obtain at leading order 

@"(& 0) = 0, @0(1,5) = 0. (34) 

We remark that an O(&) temperature perturbation term to the frozen solution in this 
outer region can be shown to possess only the trivial solution. This outer region is 
non-similar as a balance between transverse diffusion and streamwise convection 
is maintained. The additional boundary condition needed to solve this system is 
obtained by matching to the inner solution, which yields 

a@o/ak = -i(np)ad",,exp [o0(o, 511. (36) 

Finally, noting that iaw varies linearly with <, we can eliminate all of the 
parametecs in t,his outer problem by introducing the coordinate translation CT = 

In [~(7cp)~da,] so t,hat our system takes the form 

@0(5, - a) = @ 0 ( 1 ,  fl) = 0, 

(a4tj0/aa (0, CT) = --XP P,(O, g) + gi. 
(38) 

(39) 

The system (37)-(39) is similar to that derived by Liilan & Williams (1971) for the 
problem of ignition of a reactive solid, except for the appearance of a non-constant 
Coefficient in our differential operator. We have numerically solved this system and 
figure 4 shows the variation of the maximum temperature perturbation @,,(0, CT) with 
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U 

FIGTJRE 4. Solution of (37)-(39) for the maximum perturbed temperature @&O, cr) verws rn in 
the adiabatic wall problem. 

the time variable a. It is found that Qo(O, a) blows up at CT = z -0.136, which can 
be regarded as the ignition time, and therefore, using the definitions of a and &,, we 
obtain the following expression for the ignition distance, CI : 

where f "(0) FZ 0.4696. 
To summarize, the above analysis has revealed that the structure of weakly 

reactive boundary layer flow over an adiabatic wall consists of an inner locally 
similar reactive-diffusive zone next to the wall, and an outer non-similar 
convective-diffusive zone. Since the system (37)-(39) is parameter-free, it needs to be 
numerically solved only once in order to obtain the universal result (40) for the 
ignition distance. This represents a significant simplification over the original system 

Tf we attempt to simplify matters further by assuming a locally similar outer flow 
field by neglecting the second term in (37), then an implicit expression for the 
maximum temperature perturbation cPO(O, a) as a function of a can easily be found, 
namely 

(1 7)-( 19). 

a = -Q,(O,a)+ln@o(O,a). (41) 

I n  accord with our earlier discussions, this locally similar result exhibits turning- 
point behaviour and the critical ignition point, evaluated by setting da/d@, = 0, is 
found to be C T ~  = - 1. When this value is inserted into (40) we find that the local- 
similarity assumption leads to an underestimation of the ignition distance by 
exp (-0.136+ 1) z 2.37, which is consistent with the numerical results in $3. 

From a practical standpoint, it is useful to discuss how the actual ignition distance 
in terms of the original physical coordinate, xI, varies with the physical parameters 
in the problem. In particular, it  follows from (7) that Q must be multiplied by a 
factor of u,, or equivalently M,, to observe the dependence of xI on Mach number. 
Thus, in figure 5 we plot the quantity M m  [I versusH, as determined by asymptotic 
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FIGURE 5 .  Log plot of the ignition distance, obtained both numerically and asymptotically, as a 
function of the free-stream Mach number for the adiabatic wall case: -, asymptotic results with 
non-similar terms ; ---, asymptotic results with local-similarity assumption ; + , numerical results 
with non-similar terms ; 0 ,  numerical results with local-similarity assumption. 

analysis and by numerical computation, for both the non-similar and locally similar 
cases. The agreement is seen to be quite good except for very small Mach numbers. 
This divergence of the solutions arises because) as can be seen from (21), our 
asymptotic analysis breaks down when ,LL - O(&. For such small values of viscous 
heating) the frozen flow field has a uniform temperature distribution to first 
approximation. Consequently, effects of the reaction rate term will be felt throughout 
the entire domain 0 < 5 d 1. Thus if we rescale the problem with ,u = $d, it is 
necessary to consider the full convective-diffusivereactive equations in the entire 
flow field. Therefore, when ,LL + 1,  the full numerical treatment discussed in $ 3  is 
appropriate, although such small magnitudes of viscous heating are not the primary 
concern of the present study. 

It is also noteworthy that the ignition distance passes through a maximum asM, 
is increased through a critical value. This implies that the effect of viscous heating 
is not appreciable when the Mach number is very small, so that, as the flow velocity 
increases, ignition is delayed to a point further downstream. As the Mach number of 
the flow is increased further, however, viscous dissipation generates enough heat to 
cause a rapid rise in the reaction rate, thereby resulting in shorter ignition distances. 
Figure 5 illustrates that an O( I )  change in M ,  results in a change of several orders 
of magnitude in xI. 

The above behaviour can be further demonstrated by noting the relation 

M", TQ @! exp (Ta/c)3 

from (40), where T, = T,[l +!j(r- I)W,], so that the extremely sensitive nature of 
the ignition distance to changes in Mach number is seen to be due to the exponential 
dependence on W,. We also note that the ignition distance has an exponential 
dependence on the bulk flow temperature, T,. However) variations of xI with T, will 
be less dramatic than variations with bulk flow velocity since T, depends only 
linearly on T,. 



Thermal ignition in supersonic $at-plate boundary layers 111 

Finally, we note that the extremely large values of <I that are obtained in this and 
subsequent cases (see figures 5 ,  6 and 8) are a consequence of the exponential 
dependence of on the activation energy, T,, as can be seen from (40). The actual 
ignition distance, xI, takes on more modest values since it is inversely proportional 
to the pre-exponential factor, B (see (7)), which is assumed to be of the same order 
of magnitude as exp (q/q). Although it is possible to normalize M ,  with a large 
reference value, say exp (TJq), to present results with values representative of the 
order of magnitude of xI, we choose not to do so since the characteristic temperature, 
T,, is a function of Mach number. Our intent in each of these figures is to demonstrate 
the variation of ignition distance with Mach number, for a given mixture with a fixed 
pre-exponential factor. The actual magnitude of the ignition distance for a specific 
Mach number can be readily determined through the use of (7). 

4.2. Isothermal wall 
We now consider the ignition characteristics of boundary-layer flows in which the 
wall temperature is held constant. As discussed in 92 we should expect very different 
behaviour depending on whether a is greater or less than zero, since the maximum 
value of the frozen temperature profile shifts from the wall to a location inside the 
boundary layer as M: is decreased below zero. We shall first analyse the situation with 
a > 0 for which external heating from the wall is the dominant source for ignition. 
Following that, we consider a < 0 for which viscous dissipation mainly provides the 
heat source for ignition. Both of these analyses break down as la1 +. 0, i.e. when the 
frozen temperature profile becomes nearly adiabatic a t  the wall. Thus, in order to 
construct valid solutions over the entire range of Mach number, we shall also analyse 
this intermediate regime in $4.2.3 after rescaling a to be O(Q). 

4.2.1. The subadiabatic wall case: a > 0 
As shown in 52> the solution for the frozen temperature in this case is given by 

Tf = T,-M:S-pLE(", (42) 
which attains a maximum value Tw at the wall. Thus, as for the adiabatic case, we 
expect a thin reaction zone to be located near E = 0. The frozen profile (42) also 
suggests that the appropriate inner stretched coordinate is X = a[ /€ ,  since the profile 
varies linearly with 5 within a narrow region near the wall. Note that the reaction 
zone is an order of magnitude smaller than that for the adiabatic wall. This is because 
the frozen temperature profile (42) for the present case drops off more rapidly as we 
move away from the wall, thereby freezing the reaction a t  a shorter distance from the 
wall. 

We seek an inner solution of the form 

%(-X> 5) = T,(-X) + ~ ~ O ( X >  <I + O(E2), (43) 
and after substituting this expansion into (17) ,  the inner structure equation to 
leading order becomes 

(44) ---LA 
2 sub exp ( O O  

a20o - 
ax2 

where (45) 

The boundary condition at the wall, as well as a matching condition at X+ co, are 
given by 

(46) 
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PICURE 6. Log-log plot, of the predicted ignition distance as a function of the free-stream Mach 
number for the hot-wall case. Curves are drawn for two different values of wall temperature: -, 
asymptotic results; +, numerical results with non-similar terms; 0, numerical results with local- 
similarity assumption. 

where the latter condition is obtained by matching to the outer solution, which 
is expanded as T,,,([, 5) = q([) +e@,,(&, 5) + O(e2). These structure equations are 
identical t o  those studied by Law & Law (1979) for the related problem of subsonic 
houndary-layer ignition over a hot plate. The only modification is the appearance of 
the parameter CL in Asub, which represents the combined heat source due to the hot 
wall and the viscous heating effects (Ju & Niioka 1991). Equations (44)-(46) have 
been solved (Law 1978) and it was shown that no steady solutions exist for values 
of dsub greater than unity. This critical state, dsub = 1, is the ignition point, and it 
was shown (Law 1978) to  be consistent with the adiabaticity condition, or the van’t 
Hoff criterion, which states that the onset of the self-sustaining reaction in the 
reactive medium occurs when the heat flux a t  the hot wall vanishes identically 
(Alkidas bt Durbetaki 1973). From (45) we now find the ignition distance to be 

Tn figure 6 we have plotted M,I& as a function of M ,  as determined both 
numerically and from (47) for two different wall temperatures. Similar to the result 
in $4.1, each curve is seen to increase withM, initially, a maximum value is reached 
and then the curve decreases. This is readily observed from the analytical result (47), 
which provides the explicit dependence of the ignition distance on the Mach number. 
Since M ,  - p i ( P - , ~ ) ~ ,  the maximum ignition point is easily calculated to occur 
when p = &/3, or M ,  = {2( Tw/T, - 1)/[5(y - i)]);. For small values of M,, the viscous 
heating effect is small compared to the hot-wall effect such that the ignition point is 
swept further downstream in a manner proportional to the velocity. As we continue 
to increase the velocity, more heat is generated then can be swept away and this 
results in a decrease in the ignition distance. For this range of Mach number, the 
kinetic energy of the high-speed flow can be utilized t o  enhance the ignitibility of the 
mixture. Further increase in M ,  eventually results in a breakdown of our analysis 
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when a+O, i.e. when the heat generated by viscous dissipation becomes comparable 
to that generated by the hot wall. 

Equation (47) also reveals the explicit dependence of the ignition distance on T,, 
and figure 6 illustrates how an increase in T, results in a shorter ignition distance. 
After each curve passes through its maximum point, we observe sharper drops in 
M ,  cI for smaller values of T,. This implies that, for this range of M,, the ignition 
distance can be made less sensitive to Mach number variations by increasing the wall 
temperature. 

Note that it was not necessary to solve the outer equation to determine <I in this 
case since, as seen from the matching condition (46), there is no heat transfer between 
the inner and outer zones up to O(c) .  Consequently, the effect of non-similarity in the 
outer frozen flow is minimized in the situation, 

4.2.2. The superadiabatic wall case: a < 0 

When a < 0, heat is transferred toward the wall and viscous dissipation is the 
energy source that induces ignition. The frozen temperature profile is again given by 
(42), but now the maximum value of T, = T, + a2/4,u is attained a t  6, = - a/2,u. Thus 
we anticipate that ignition will occur inside the supersonic boundary layer a t  a 
distance 6, away from the wall. We first consider a = O( 1 )  for which the structure of 
the boundary layer consists of two frozen outer zones, 0 < 6 < 6, and 6, < g < 1, of 
O( 1) length separated by a diffusivereactive inner zone of thickness O(d) at 6 = 6,. 
We note that as a+O the ignition distance approaches the wall, and the present 
analysis breaks down. In  54.2.3 we will treat the intermediate regime for which la1 = 

In  the reaction zone, the appropriate stretched inner coordinate is given by Z = 
O(Q). 

,ui(f-f;,)/d and we seek solutions of the form 

After substituting the above expansions into equations (17)-(19b), we obtain a 
system of equations to be solved recursively a t  each order in 8. As for the adiabatic 
wall problem, when the magnitude of the Damkohler number is chosen such that the 
reaction term balances the leading-order diffusion term, then the structure equations 
do not possess a solution. Thus again, the ignition distance is overestimated, and it 
is necessary to rescale the Damkohler number as 

T,,(Z,Y) = Tf(Z)+Ed,(Z, C)+&Z, c)+O(~2) .  (48) 

where ye is defined by f'(y,) = 6,. With this scaling (49), the structure equations a t  
the first two orders are 

aw,/az2 = 0, (50) - 
a20,/aZ2 = - dsup exp (8, - Z 2 ) ,  (51) 

and solutions to  these equations must satisfy two boundary conditions which are 
found by matching to the outer solutions at Z + &  co. At leading order, we require 
that solutions be bounded as Z++ co, and it follows from (50) that 0, must be a 
function of 5 only. 

In  the outer frozen flow regions on either side of the reaction zone, the temperature 
field is expanded as 

TL(6 ,  5) = W )  + c@i/ (E>  <) + O(&, (52)  
where the leading-order temperature perturbation is continuous across the reaction 
zone, i.e. 

@X,  0 = @ O ( L  5) = 8 O ( c L  (53) 
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FIGURE 7 .  Functional relation between the streamwise, T ~ ,  and transverse, tC, location of ignition 
for the viscous heating case: -, numerical result; ---, fitted curve given by the correlation 
function (58). 

and matching the gradients to the solution of (51) yields 

where the function C(c), which arises through one integration of (51), is as yet 
unknown. It is convenient to introduce the variable 7 = In [(np)~d",,,,], so that when 
(52) is inserted into (17)-( 19b) the equation for the leading-order temperature 
perturbation becomes 

subject to the boundary conditions 

@;(0,7) = @i(1,7)  = @'$(t, -a) = 0. (56) 
Furthermore, we can eliminate C([) from (54) to obtain the jump condition at  

which relates the gradients on either side of tc in terms of @jO(tc, 7). The appearance 
of the streamwise convection term in (55) again represents the non-similar effects in 
both outer flow fields. A similar structure problem has also been independently 
obtained by Grosch & Jackson (1991) in the related problem of ignition in a 
compressible mixing layer. Our system (55)-(57), containing the single parameter cc 
which varies from 0 to 1, was solved numerically, and figure 7 shows the distance 7I 
a t  which the temperature perturbation blows up as a function of the parameter 6,. 
A useful correlation for this curve, which is accurate to within a few percent error, 
is given by 

7&) = ~ ~ ( 0 . 5 )  -21n If"(yc)/f"(l.092)] +0.448[(1n (fJ0.5)11,36 

- Iln [(I - tc)/o.5111~331, (58) 
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FIGURE 8. Log plot of the predicted ignition distance as a function of the free-stream Mach number 
for the isothermal wall. Curves illustrate how asymptotic solutions in each regime match together 
to provide results over the entire range ofM, : -, asymptotic results for subadiabatic wall case ; 
-0-, asymptotic results for superadiabatic wall case with non-similar terms ; -.- , asymptotic 
results for superadiabatic wall with local-similarity assumption ; ---, asymptotic results for 
intermediate case ; + , numerical results with non-similar terms ; 0,  numerical results with local- 
similarity assumption. 

wheref'(1.092) = 0.5 and ~ ~ ( 0 . 5 )  % 1.230. By using (58) and the definition of 7 ,  we 
now find the final solution for the ignition distance to be 

In deriving this expression, we remark that non-similar effects were accounted for 
in the two frozen regions on either side of the reaction zone. Asymptotic analysis 
enabled us to simplify the original problem to the reduced system (55)-(57) for the 
temperature perturbation across a discontinuity. Nevertheless, this reduced problem 
consists of a partial differential equation with a nonlinear boundary condition, which 
required numerical treatment. 

As discussed in our study of the adiabatic wall, $4.1, if the local-similarity 
assumption is made in the outer zone, then it is possible to construct analytical 
solutions which possess a turning point at  

This expression then replaces the correlation (58) ,  but again the ignition distance is 
underestimated by a factor of approximately two. It is easy to verify from (60) that, 
when the local-similarity approximation is made, 7I achieves its minimum value at 
tC = $, i.e. when T, = T,. However, as illustrated in figure 7,  non-similar effects cause 
this minimum to shift into the region 6, < t for which T, > T,. 

In figure 8 we compare the ignition distances found asymptotically in $4.2.1 and 
$4.2.2, for a greater and less than zero respectively, with the numerical results of $3. 
For the viscous heating case, a < 0, results when making the local-similarity 
assumption are also provided and are denoted by the dotted curve. In this 
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FIGURE 9. The solution of (62)-(64) for the intermediate regime when r = 0. 

calculation, the wall and ambient temperatures are held constant at  10OOK and 
500 K respectively, while the Mach number is varied. Both asymptotic analyses are 
seen to break down as la1 + O ,  which corresponds to M ,  x 2.24 for the parameter 
values used here. In order to complete our analysis and to provide explicit results 
over the entire range of M,, we now consider small values of lal. 

4.2.3. The nearly adiabatic wall (intermediate) case: la1 4 I 
Based on previous discussions, our analyses are no longer valid when the 

magnitude of a becomes O(&). Thus we rescale a as a = &, introduce the stretched 
coordinate x = ,u&J&, and seek solutions for the inner temperature profile as 

T,n(x, 5) = q x )  + "0o(x, 5) + O(Q)  
= Tw + €[0, - (x2 + r x ) ]  + O(€i), (61) 

(62) 

where r = &/pi. To leading order, the inner structure equation is given by 

i328,/ax2 = - A ,  exp (19, - x2 - Tx), 

where 
Y 

and the boundary and matching conditions are 

0,(0, C) = 0, (aeolax) (a> 5) = 0. (64) 

The reactive-diffusive equation (62) together with boundary conditions (64) can be 
solved independently of the outer frozen zone structure. Thus, the non-similar nature 
of the outer frozen flow does not greatly affect the ignition characteristics. Although 
a first integration of (62) can be performed, no explicit analytical solutions to 
(62)-(64) could be found and so the system was solved numerically in order to obtain 
the critical ignition distance as a function of r. In figure 9 we have set r =  0 and 
plotted the quantity 0, - x 2 ,  which represents the actual temperature profile near the 
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A m  

FIGURE 10. The maximum temperature perturbation 8,( 00)  versus system Damkohler number 
A,,, for the intermediate regime, illustrating turning point behaviour. 

hot wall, for various values of the parameter A,. Multiple solutions are found to exist 
up to the critical value of A ,  = 0.944, beyond which there are no solutions. This 
turning point behaviour is clearly illustrated in figure 10, where the maximum value 
of 6, is plotted versus A,. The critical value, which we denote by Am,I, then provides 
the ignition criterion. 

The fact that the ignition point in this problem is given by the turning point of the 
maximum temperature perturbation is expected since equations (62)-( 64) are 
locally similar. It should also be noted from figure 9 that, a t  the criticality point 
(Am,I = 0.944), the temperature gradient is superadiabatic at  the wall. This contrasts 
with the result of the subadiabatic wall case in which the criticality criterion and the 
adiabaticity criterion were found t o  be equivalent. Recall that a similar situation was 
found to hold for the adiabatic wall and the superadiabatic isothermal wall cases 
when the locally similar approximation was made. In both cases, ignition was 
determined from the criticality condition, while the adiabaticity criterion was not 
the appropriate condition to predict the onset of reaction. Only when the inert 
temperature profile varies linearly within the thin reaction layer, such as in the hot- 
wall ignition problem, are the two criteria equivalent. 

The objective of this analysis is to determine A,,,, and since (62) has an additional 
parameter, r, the resulting ignition Damkohler number must be a function of r. 
Although no explicit expression can be found for A,,JI-‘), a useful correlation for this 
curve, accurate to within a few percent, is given by 

0.944exp[0.85r-O.l7P] for r d 0, 

0.944 + 0.80r+ 0 . 4 1 ~  for r>  0. 

Equation (63) can now be used to determine the ignition distance as 

and the result is plotted in figure 8 as the dashed curve. The solution for this narrow 
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range of Mach numbers bridges the gap between the solutions obtained earlier for 
values of CI greater and less than zero. Thus we have succeeded in explicitly 
determining the ignition distance over the entire range of Mach numbers for the 
problem of supersonic boundary-layer ignition over an isothermal wall. 

It is also of interest to note that the ignition characteristics for the intermediate 
regime studied in this section are markedly different from those for the adiabatic wall 
despite the fact that they have the same leading-order inert temperature profile, with 
T, replaced with T,. This illustrates the significant effect that the wall conditions can 
have on the ignition delay in supersonic boundary layer flows. For the isothermal 
wall with la1 < 1, although the frozen profile is adiabatic to leading order, the 
reaction-zone temperature perturbation is suppressed at  the wall. This causes the 
reaction to initiate at a greater distance from the wall than when adiabatic 
conditions are applied. Consequently, the evolving hot kernel loses heat to both 
directions at the point of maximum temperature, thereby resulting in a longer 
ignition distance. Indeed, if we compare the result (66) of the present section to (40) 
of 54.1, we observe that the ignition distance for the adiabatic wall is O(&) smaller 
than that of the isothermal wall. 

5. Concluding remarks 
The thermal ignition of a premixed combustible within a supersonic flat-plate 

boundary layer has been studied asymptotically by exploiting the realistic limit of 
large activation energy. In  particular, we have derived explicit expressions for the 
minimum ignition distance along the streamwise coordinate for both adiabatic and 
isothermal walls. These expressions provide the necessary information to predict 
ignition events, and also reveal the effects of the various system parameters on the 
ignition distance. One parameter of particular importance is the viscous heating 
term, p, that appears in the energy equation for supersonic flows. It was shown that 
the ignition characteristics of boundary layer flows depends significantly on whether 
this parameter is greater or less than the inviscid heat transfer parameter, p. In 
particular, when /3 > p)  ignition was shown to occur when the heat transfer at  the hot 
wall vanished identically. On the other hand, when ,u > /3, viscous heating is the 
dominant mechanism for ignition, and the frozen flow has a temperature bulge at a 
finite distance from the wall so that the temperature profile is superadiabatic at the 
wall. For this case, as well as for the adiabatic wall case, non-similar effects are 
important and ignition is interpreted as the state at which the solution for the 
temperature perturbation blows up. 

In general, the structure of a weakly reacting supersonic boundary layer was found 
to consist of an inner, locally similar, diffusive-reactive region near the point of 
maximum temperature and an outer diffusive-convective, generally non-similar 
region. Although the reaction term vanishes to all algebraic orders in the outer layer, 
the frozen region becomes non-similar due to the heat transfer from the thin reactive 
layer. It was shown that, for the adiabatic wall and the isothermal wall with 
sufficiently large viscous heating, failure to include these non-similar effects results 
in an underestimation of the ignition distance by a factor of about two. For the hot- 
wall ignition problem, the driving mechanism for ignition is the heat transfer from 
the wall and the problem is basically the same as that for ignition in subsonic 
boundary layers. It was found that non-similar effects in the boundary layer are less 
important for this case because there is no heat transfer between the frozen and 
reaction zones to first approximation. 
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Although our results compare favourably to direct numerical solutions, the critical 
distance determined by numerical calculation is always found to exceed the 
asymptotic result. There are several factors that lead to the difference in these 
solutions. First, in the numerical study the ignition point was defined to be the 
location at  which the actual temperature profile achieved thermal runaway, whereas 
in the asymptotic analysis ignition was determined from the behaviour of the 
temperature perturbation. Secondly, since the asymptotic analysis is valid for small 
values of the perturbation parameter 6,  the results become more accurate as E + O .  
Indeed it can be shown that better agreement between the curves in figures 5 and 8 
is observed for larger values of the activation energy or smaller values of the 
maximum inert temperature, both of which result in smaller values of 6. Thirdly, we 
note that reactant consumption is negligible in the asymptotic analysis, while these 
effects are fully accounted for in the numerical calculation. The ignition distances 
(4O),  (47), (59) and (66) are found to be inversely proportional to the mass fraction 
of each species, and thus consumption is expected to weaken the reaction rate and 
cause a longer delay before ignition. Effects of reactant consumption were considered 
by LiiiiBn & Williams (1971, 1972, 1979) for the ignition of a solid with various 
external heat sources, and by Law & Law (1981) for subsonic boundary-layer 
ignition. These asymptotic analyses provide higher-order correction terms to the 
critical ignition time, and indeed it was shown that reactant consumption causes a 
delay in ignition. 

Equation (7) can be used to write each of the expressions (40), (47), (59) and (66) 
for the ignition distances in terms of the original streamwise physical coordinate, x, 
in order to assess the effects of the various system parameters on the actual ignition 
distance, xI. In particular, xI is seen to vary in an Arrhenius manner with the 
maximum characteristic temperature, T,, and it is proportional to the dissipation 
function, (f”)2. 

Finally, we remark that the present analysis is only concerned with events leading 
up to ignition. Once ignition occurs, a flame develops that propagates upstream and 
is stabilized at a location where the flame speed balances the flow speed. In the 
presence of a fully developed flame, the structure becomes much more complicated 
as the similar nature of the boundary layer needs to be re-examined and shock waves 
may also develop. A better understanding of such interesting phenomena requires 
further study. 
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